@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@o 1740875 ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ @@@Κν[hΙίι@@«@@hmcdw@@«@@αOΦ@@ @@Φβ@@@ ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ @₯CDH }pu}py{u 5 Tyrellomice 17/11/14(Ξ) 4:39 @ @‘θΌ F CDH }pu}py{u 5 @‘ΌO F Tyrellomice <Codiawainny@rd6reduv.blogrtui.ru> @‘ϊt F 17/11/14(Ξ) 4:39 @-------------------------------------------------------------------------
http://shkodkerch2.rael.me/15/vse-formuli-po-fizike-8-klass-perishkin.php - http://filegoogle.ru/images/gdz.jpg http://filegoogle.ru/images/br.gif Ay|sy . (qyu xp{~}u~y). uq~y{ t| 10-11 {|pr quqpxrpu|~z 9 {|p . uq~y{ (+cd) - xppr , }p}~r , ~y~ , psp~rp. http://shkodkerch2.rael.me/15/vse-formuli-po-fizike-8-klass-perishkin.php - shkodkerch2.rael.me Qpqp sp}}put~px~pu~p t| yx u~y qy|syy r 11 {|pu Hp{~ QU 10 y| 1992 stp 3266- 1 (ut. 02.02.2011) "Oq qpxrp~yy". 2. {}|u{ uq~y{r, xtp~~ t {rtr} B. B. Ppu~y{p /pr. pq |y{rytpyy qu|r r x{p r 11 } {|pu . py 11 {|pp Ay|u PDD 2013 , Rp} yu| rwtu~y st . PDD 2011. sp}} collection `ndex.ru ^{xp}u~py~~z u PDD T{py~p {p. CD 2012 . Qpqp upt qy|syy 9 {|p (B.B. Ppu~y{, C.C. Yrur ) CDH. Du| r } { }}u~ ru{y pq rustp ~pty r {|pu 8-10 7 . R{y~ P.I. Hp~y}pu|~u xptpy }pu}py{u r ~pp|~ Ctx su}uyy pp~p~ 9 {|p 2010 Mt{ry. Sp{ wu B }wuu ~p }p{y}p|~z {y {pp |qz uuq~y{! Upz| ~pztu~: stx p~s|yz{} 9 {|p happy english ru kaufman 2009 gdz-po-anglijskomu- 9 -klass-happy-english-ru-kaufman-2009.zip CDH }pu}py{u 5 {|p. Xu~{r @.R. Bpyp~ 3. K-13. Hptpp 1 VIMI` 8 {|p y- sry pr }pz 240 s. }prz t|uz ppp 6 %. rpyp~ i 4 {|p . Tpw~u~y y ty{p~ ru~~z |w~y. K|y, QORS{~ysp, 2008, 61.60, 70.10. 72, Npp|~p 1263, Mpu}py{p , Tuq~y{, By|u~{y~ 5 {|. 1483 , I~}py{p, TMK Cuz~p, Tuq~y{, Cuz~ 11 {|. Uyxy{p. Quuq~y{ (Apxrz y y|~z r~y), Pruu~yu, 2011, 81.30, 92.60. Cru D}p~uu Hptp~yu (CDH) Uyxy{u 8 {|p Pu{y~ @.B, C ~y{ E .M. }uu u~y{p} p{rp ~r~u } | y xp{~ tp~~z ~p {y. Pprtp, ~u} ~p , }~syu {|~y{y ru pr~ p|{yrp @ Xq pxry p} y r~y}p~yu, pqp {py~{p}y "~pzty |yy". . Ququ~{ 6 - 7 |u pry|~ ryxrty t yx 5- 6 |r. K~u{ |u{yz ; ^{uy}u~ sp~yu{z y}yy r ut~uz {|u; K rpu} r~y}p~y uq~y{y y}yy t| 7 {|pp, 8 {|pp , 9 {|pp, 10 Hptpy y~y uu~y }w~ p}u |ut y} qpx}. .. Npxrp~yu r~ pwpu ~px~pu~y, ~{y s x|r r y pyy CDH }pu}py{u 5 {|p. Xu~{r @.R. Bpyp~ 3. K-13. Hptpp 1 Tuq~p |yup p / 9 {|p / Ay|sy / Ay|sy . 9 {|p . y. - M.: Bu~p~p - Cp , xp 11 {|p , c uup . Mpu}py{p R{pp qy|u }pu}py{u. @|suqp y ~pp|p Psp}}p yxy{u t| 10 11 {|pr quqpxrpu|~ uwtu~yz (qpxrz y y|~z r~y). @r sp}} B. R. Dp~u~{r, Home@xokub@uy . p|suqp 8 {|p . uy . p|suqp 8 N {purp r~y}p~y, ~uqty}u t| u~z pq r {|pu y t}p, |y tuy, uut { uu~y xptp, uwtu rus qpp r~y}p~yu ~p y|p . O~y p px yxrty ~y}y px|y~u }pu}pyu{yu tuzry: 1 ) Vyz u} {p y t }p~~p us sp~yxpy. qux RMR@stx tytp{yu{yz }puyp| { uq~y{ }pu}py{p 2 {|p {x|rp. stx CDH ( Cru t}p~yu xptp~y ) QTRRKIJ `H\K t| 6 -J KL@RR C. Qusyy z y | pz qu|p~u CDH , ~|pz~ uu~y xptp y 22 23 24 . 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 CDH }pu}py{u 5 {|p. Xu~{r @.R. Bpyp~ 3. K-13. Hptpp 1 Quuq~y{ y}y 11 {|p spqyu|~ qpxrz ru~ 2007, R{pp qu|p~ {~ys . Cru Qpqp sp}}p uq~} { @|suqp. 9{|p . Puuu~ . Uyxy{p 7 {|p, Pu{y~ @ .B., Qty~p N.@., 1997.. L {py{. R{pp uuq~y{ "CDH { uq~y{ y}yy 10 {|p Cpqyu|~" q qux }xr K~ysp @|suqp y ~pp|p p~p|yxp 11 {|p: ru ~p {xp}u~py~~u qy|u. @|suqp y ~pp|p p~p|yxp 11 {|p: ru ~p {xp}u~py~~u Qpqp sp}}p { p qy|syy t| 8 {|pp pr|u~p ~p ~ru C tpru~~s p~tpp . Sru{u xptp~yu: pry {rt . 28.10. Quuq~y{ |yup ~} u~y 3 {|p q ~uur pqp upt . A ~uurp, A ~uur - Supt |yup ~} u~y . {u {y }pu}py{u r 10 -11 stx rytu {y p|suqu 9 {|p . rytu { Ryu}p u~yrp~y tu|~ xptp~yz y pq r u|} q pyu 5 -11 {|pr ut~y quqpxrpu|~ uwtu~yz, wu|pyu prrp r . R|utrpu|~, xptp~yu u~yrpu r 0, 5 10 = 5 qp||r. Np 48 {putp ~yruyup y r 14 y|yp|p {put ~p yxrtru pqpu Vy}y y|y }pu}py{p ( rq ). }u~ ~pru~ y| {-, { xp{~y| r Lrru u{| ( yx Lrr{z q|py). Htprr zu! uzp r 9 {|pu y ~u x~p p r KNTSD y|y ~u ,r {|u Crp t}p~ pqp }pu}py{u ~ ry|u~{y~ { }pu}py{u xp 5 {|p Ix ~y ~p su}uy 2 pp r su}uyy r 7 {|pu R@MORSO`SEL]N@` Q@AOS@ http://www.youtube.com/watch?v=orMbvjrvxvE Quu~yu xptp EC^ Areas of mathematics Arithmetic Algebra elementary linear multilinear abstract Geometry Quuq~y{ yxy{u 7 {|p Rup~rp C stx up~rp yxy{p 7 R{pp CDH yxy{u 7 Trzy uux uID. C|r~p ~{p · CDH ( T{p~p ) · 5 {|p · 6 {|p · 7 {|p · 8 {|p · 9 {|p . xprtp~~. Bp} ~u trutu {py pxy: {pp stx su}uy p|rp 11 {|p, {pp stx 11 {|p p|rp , p uus|~u stx qux{r~ ~|pz~, p y}pzu rtrt ~p r xpyp~~. |